408 Magnetization Transfer Contrast of Brest Using Fast Sipn Echo.
نویسندگان
چکیده
منابع مشابه
Pulsed magnetization transfer spin-echo MR imaging.
Cross relaxation between macromolecular protons and water protons is known to be important in biologic tissue. In magnetic resonance (MR) imaging sequences, selective saturation of the characteristically short T2 macromolecular proton pool can produce contrast called magnetization transfer contrast, based on the cross-relaxation process. Selective saturation can be achieved with continuous wave...
متن کاملSimultaneous Echo Refocused Magnetization Transfer Imaging
Purpose: To increase the efficiency of densely encoded magnetization transfer imaging of the brain, we time-multiplex multiple slices within the same readout using simultaneous echo refocusing FLASH imaging with magnetization transfer (MT) preparation (MT-SER-FLASH). Materials and Methods: Inefficiency in total scan time results from the number of frequency samples needed for sufficient quality...
متن کاملMRI of the human eye using magnetization transfer contrast enhancement.
PURPOSE To determine the feasibility of using magnetization transfer contrast-enhanced magnetic resonance imaging (MRI) to track cataractous lens changes. METHODS A fast spin-echo sequence was modified to include a magnetization transfer contrast (MTC) preparation pulse train. This consisted of twenty 8.5-msec sinc pulses, 1200 Hz upfield from the water resonance and 1.2-Hz power. The MTC pre...
متن کاملMagnetization transfer contrast imaging of hepatic neoplasms.
A method of performing magnetization transfer contrast (MTC) using a pulse sequence based on a series of on-resonance binomial pulses preceding a conventional spin-echo sequence has been recently described. We investigated this technique in the evaluation of circumscribed hepatic neoplasms on a 0.5 T imager. Conventional spin-echo imaging was performed in 18 patients with hepatic neoplasms, 15 ...
متن کاملDiffusion-weighted EPI with magnetization transfer contrast.
Capabilities of diffusion-weighted (DW) and magnetization transfer (MT) imaging are well established for tissue characterization in various pathologies individually. However, the effect of suppression of macromolecules on applying MT pulse on signals associated with DW imaging and resulting change in the apparent diffusion coefficient (ADC) of water molecules has not been demonstrated previousl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese Journal of Radiological Technology
سال: 1995
ISSN: 0369-4305,1881-4883
DOI: 10.6009/jjrt.kj00001353179